Algoritmo genérico com chaves aleatórias viciadas para problemas de otimização em portos

Algoritmo genérico com chaves aleatórias viciadas para problemas de otimização em portos

Author Pomari, Carlos Zaca Autor UNIFESP Google Scholar
Advisor Chaves, Antonio Augusto Chaves Autor UNIFESP Google Scholar
Institution Universidade Federal de São Paulo (UNIFESP)
Graduate program Ciência da Computação
Abstract The aim of this work is to address one of the problems that is present in the operation of many ports and that influences their efficiency: The berth allocation problem (BAP), which seeks to minimize the vessels? handling times, indicating their order of berthing and their location on the quay. This problem has strong theoretical and practical interests, since the growth of the world economy and international trade in goods has stimulated, in recent years, the demand for shipping services. The methodology for the development of this work consists in studying and applying a hybrid algorithm based on Biased Random Key Genetic Algorithm (BRKGA) and Clustering Search (CS) metaheuristics to heuristically solve the BAP. A BRKGA searches the solution space of the combinatorial optimization problem indirectly, therefore, it is necessary to specify how solutions are encoded and decoded and how their corresponding fitness values are computed. This study uses the BRKGA as solutions generator to the CS? clustering process. To validate the proposed method, computational tests are performed with instances available in the literature and a case study of the BAP with operating data from Tubarão-ES port.

O objetivo deste trabalho é abordar um dos problemas presentes na operação de muitos portos e que influenciam sua eficiência: o problema de alocação de berços (PAB), que busca minimizar o tempo de atendimento dos navios, indicando a ordem de atracação dos mesmos e a respectiva localização no cais. É um problema que possui forte interesse teórico e prático, uma vez que o crescimento da economia mundial e o comércio internacional de bens têm estimulado, nos últimos anos, a demanda por serviços de transporte marítimo. A metodologia para o desenvolvimento do presente trabalho consiste no estudo e na aplicação de um algoritmo híbrido baseado nas meta-heurísticas Algoritmo Genético com Chaves Aleatórias Viciadas (BRKGA, do inglês Biased Random Key Genetic Algorithm) e Busca por Agrupamentos (CS, do inglês Clustering Search) para resolver de forma heurística o PAB. O BRKGA procura o espaço de solução do problema de otimização combinatória indiretamente, por isso, é necessário especificar como as soluções são codificadas e decodificadas e como seus valores de aptidão correspondentes são computados. Neste trabalho, utilizase o BRKGA como gerador de soluções para o processo de agrupamento do CS. Para validar o método proposto são realizados testes computacionais com instâncias disponíveis na literatura e um estudo de caso do PAB considerando os dados operacionais do Porto de Tubarão - ES.
Keywords combinatorial optimization
biased random key genetic algorithm
berth allocation problem
clustering search
metaheuristic
maritime transport
otimização combinatória
algoritmo genético com chaves aleatórias viciadas
problema de alocação de berços
clustering search
metaheurística
transporte marítimo
Language Portuguese
Date 2014-05-30
Published in POMARI, Carlos Zaca. Algoritmo genérico com chaves aleatórias viciadas para problemas de otimização em portos. 2014. 87 f. Dissertação (Mestrado) - Instituto de Ciência e Tecnologia, Universidade Federal de São Paulo (UNIFESP), São José dos Campos, 2014.
Research area Ciência da computação
Knowledge area Ciências exatas e da terra
Publisher Universidade Federal de São Paulo (UNIFESP)
Extent 87 p.
Origin https://sucupira.capes.gov.br/sucupira/public/consultas/coleta/trabalhoConclusao/viewTrabalhoConclusao.jsf?popup=true&id_trabalho=1325140
Access rights Closed access
Type Dissertation
URI http://repositorio.unifesp.br/handle/11600/46510

Show full item record




File

File Size Format View

There are no files associated with this item.

This item appears in the following Collection(s)

Search


Browse

Statistics

My Account