Therapeutic use of a cationic antimicrobial peptide from the spider Acanthoscurria gomesiana in the control of experimental candidiasis

Therapeutic use of a cationic antimicrobial peptide from the spider Acanthoscurria gomesiana in the control of experimental candidiasis

Author Rossi, Diego C. Google Scholar
Munoz, Julian E. Google Scholar
Carvalho, Danielle D. Google Scholar
Belmonte, Rodrigo Google Scholar
Faintuch, Bluma Google Scholar
Borelli, Primavera Google Scholar
Miranda, Antonio Autor UNIFESP Google Scholar
Taborda, Carlos Pelleschi Autor UNIFESP Google Scholar
Daffre, Sirlei Google Scholar
Institution Universidade de São Paulo (USP)
SD&W Modelagem & Solucoes Estrateg Ltda
Inst Energet & Nucl Res
Universidade Federal de São Paulo (UNIFESP)
Abstract Background: Antimicrobial peptides are present in animals, plants and microorganisms and play a fundamental role in the innate immune response. Gomesin is a cationic antimicrobial peptide purified from haemocytes of the spider Acanthoscurria gomesiana. It has a broad-spectrum of activity against bacteria, fungi, protozoa and tumour cells. Candida albicans is a commensal yeast that is part of the human microbiota. However, in immunocompromised patients, this fungus may cause skin, mucosal or systemic infections. the typical treatment for this mycosis comprises three major categories of antifungal drugs: polyenes, azoles and echinocandins; however cases of resistance to these drugs are frequently reported. With the emergence of microorganisms that are resistant to conventional antibiotics, the development of alternative treatments for candidiasis is important. in this study, we evaluate the efficacy of gomesin treatment on disseminated and vaginal candidiasis as well as its toxicity and biodistribution.Results: Treatment with gomesin effectively reduced Candida albicans in the kidneys, spleen, liver and vagina of infected mice. the biodistribution of gomesin labelled with technetium-99 m showed that the peptide is captured in the kidneys, spleen and liver. Enhanced production of TNF-alpha, IFN-gamma and IL-6 was detected in infected mice treated with gomesin, suggesting an immunomodulatory activity. Moreover, immunosuppressed and C. albicans-infected mice showed an increase in survival after treatment with gomesin and fluconazole. Systemic administration of gomesin was also not toxic to the miceConclusions: Gomesin proved to be effective against experimental Candida albicans infection. It can be used as an alternative therapy for candidiasis, either alone or in combination with fluconazole. Gomesin's mechanism is not fully understood, but we hypothesise that the peptide acts through the permeabilisation of the yeast membrane leading to death and/or releasing the yeast antigens that trigger the host immune response against infection. Therefore, data presented in this study reinforces the potential of gomesin as a therapeutic antifungal agent in both humans and animals.
Language English
Sponsor Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Date 2012-03-06
Published in Bmc Microbiology. London: Biomed Central Ltd, v. 12, 9 p., 2012.
ISSN 1471-2180 (Sherpa/Romeo, impact factor)
Publisher Biomed Central Ltd
Extent 9
Origin http://dx.doi.org/10.1186/1471-2180-12-28
Access rights Open access Open Access
Type Article
Web of Science ID WOS:000304624300001
URI http://repositorio.unifesp.br/handle/11600/34706

Show full item record




File

Name: WOS000304624300001.pdf
Size: 1.570Mb
Format: PDF
Description:
Open file

This item appears in the following Collection(s)

Search


Browse

Statistics

My Account